

MVC With and Without
a Framework

Nolan Erck

About Me
● Independent Consultant – southofshasta.com

– Software Development, Training, Design
● Tools I use: ColdFusion, C++, Java, jQuery,

PhoneGap, PHP, .NET, HTML5, Android SDK, SQL,
etc...

● Manager of SacInteractive User Group

● Reformed Video Game Developer (Grim Fandango,
SimPark, StarWars Rogue Squadron, etc).

● Music Junkie

Today's Agenda
● Some prerequisites

● Intro to Model-View-Controller pattern

● Some pros and cons

● All concepts are non-framework, non-language
specific

● Some code samples

● Slides and code are on my site:

– Southofshasta.com/presentations/

Before we get started...
● Everyone should know...

● CFComponent

– How to create and use via CreateObject()

– Some understanding of how a component
works

● The code samples aren't “perfect OO”

– Some shortcuts to make the concepts
easier to learn.

● One more thing you need to know...

OO Programming is Hard

● Very different from a top-down procedural script

● Several new concepts and design considerations

● Some of it is very confusing at first

● That's NORMAL

...but this is the way development is
moving on pretty much every platform

CFComponent

● ColdFusion's OO construct

● Same as “class” or “object” in Java, C++, etc

● Several calling conventions – cfinvoke, cfobject,
CreateObject, new

– we'll use CreateObject()
● Typically includes an “init” method for setup but

that's not technically required

Musician.cfc

<cfcomponent>

<cfset variables.name = “” />

<cfset variables.instrument = “” />

<cffunction name=”doSomething”>

<!--- code goes here --->

</cffunction>

</cfcomponent>

Musician.cfc

● You use it like so:

<cfset mySinger = CreateObject(“component”,

 “Musician”) />
<cfset mySinger.name = “John Lennon” />

<cfset mySinger.doSomething() />

Model View Controller

● Not ColdFusion specific
● Common design pattern used in other OO

languages
– What's a design pattern?

● $6 word for “a common problem solved by
organizing objects in a certain way”.

● Like for() loops and arrays but with objects
and methods.

Model View Controller

● Used within CF frameworks (Framework-1,
ColdBox, Model-Glue, Mach-ii, etc)

● Lots of this info/concepts transfers to other OO
languages

● Basically a way of organizing and calling your
code that “separates the concerns”

– Display code, controlling flow, data/business logic.

View
● The part of the app that users, well, view
● HTML, CSS, JavaScript
● Some CF for display logic but that's it.

– Toggle the “log in / log out” button, etc

– Alternating page row colors in a table (but
really, do that in CSS!)

● No business logic, no SQL code
● The menu at a restaurant

Model
● Short for “data model” (kind of)
● Where all (yes all) your SQL code lives
● Doesn't have to be a database

– Whatever your storage medium is
● Log files, XML, etc

● Business logic mostly lives here too
● The kitchen / chef at a restaurant

Controller

● Sits between the Model and the View

● No HTML output, no SQL

● Small bits of “logic” for controlling the flow of your
application

– User clicks “save” button, save action
happens, user is then directed to the next
page in the app.

● Like the waiter in a restaurant

Model View Controller
● View

HTML

JavaScript

CSS

UI-related logic,
but no business
logic

No SQL!

● Controller

Glues the View
and Model
together

● Logic for
controlling flow
of the app

● “Controls”
where the user
goes next

● Model

SQL

Business logic

LDAP

XML I/O

etc

Demo – Old Spaghetti App

● Nothing is modular (CFInclude doesn't
count, it leaks data)

● SQL, HTML and business logic are all
mixed together

● No ability to build an API
● Lots of risk when making upgrades

Demo - Model
● Nothing new here

● Same CFQuery stuff we've used for years, just
inside CFFunction tags

● “But that's a lot of typing”

– One-time “pain” for developer is less
important than better overall architecture

– Various IDE tools, plugins, code
generators, etc that will help.

Demo - View

● Nothing new here either

● Mostly plain HTML, JavaScript, CSS

● A small amount of CF for display logic

● No SQL, no real business logic

● Easy to swap out new UI, add Bootstrap, make
the site responsive, etc

● No SQL or business logic to accidentally break

Demo - Controller

● Takes the info from the user
● Does some minor validation
● Hands the data off to the Model for all the

heavy lifting
● Controls where the user goes next in the

application
● No SQL, Business logic, or HTML

Demo - Controller

● Other benefits
– access=”remote”

– Methods can be called via HTTP

– Automatically available for ajax, for mobile
apps, as an API

● (A few other design considerations handled
first for security, proper modularity, etc)

MVC - Pros
● Promotes code reuse

● Allows multiple people to work on code at the
same time

– 1 works on UI (View), 1 works on app flow,
1 on SQL queries, etc

● Non-framework, non-language specific

● Very common pattern/nomenclature

– “Model” means the same thing in Java,
.NET, Ruby, C++ and so on

MVC - Cons

● A change in style from spaghetti code, or even
good procedural programming

– May take time to “click”
● “More typing” to get the 3 layers up and running

– But the code is more reusable

– And seriously, this is lame excuse
● IDE, plugins, various tools to help

write code for you

When Is This Enough?

● Should I use a framework? When is this MVC
pattern enough by itself?

● Open source projects

– Personal preference

– Works on old flavors of CF
● When I just need some organization

– But won't use the “extras” from ColdBox,
Framework-1, Model-Glue, etc

Using a Framework
● MVC frameworks all kind of work the same way

● ...because they're all using the same design
pattern!

● Framework-1, ColdBox, Model-Glue, Mach-ii, all
have places to put “views”, “controllers”, and
“models”

● Only difference is a little syntax and calling
convention stuff. Nothing crazy.

● Let's look at a Framework-1 app

A few last thoughts
● OO is hard!

● That's normal

● Nobody instantly knows this stuff the first time

● But it does make building large apps simpler

– Keeps you organized

– Common terminology

– Separation of concerns, easy to update UI,
update API, split up the work

Other Resources

● Book: Head First Design Patterns

● Book: Object Oriented Programming in
ColdFusion – Matt Gifford

● ColdFusionBloggers.org

● BACFUG or CF-Talk mailing lists

● Framework-1 Google Group

● Model-Glue Google Group

Questions?

Email: nolan@southofshasta.com

Twitter: @southofshasta

Blog: southofshasta.com/blog/

(Slides are on my website.)

Thanks!

